Skip to main content

Discuss the working of slotted aloha along with its efficiency in terms of channel utilization.

Understanding Slotted ALOHA: Efficiency and Channel Utilization in Computer Networks

What is Slotted ALOHA?

  • A random access protocol for wireless networks.
  • Divides time into discrete slots synchronized across all nodes.
  • Nodes transmit only at the beginning of a slot.

How Slotted ALOHA Works

  • Nodes have packets ready for transmission.
  • Each node waits for the beginning of a time slot.
  • A node transmits its packet at the start of a randomly chosen slot.
  • If only one node transmits in a slot, the transmission is successful.
  • If multiple nodes transmit simultaneously, a collision occurs.
  • All collided packets are lost and retransmitted after a random delay.

Efficiency of Slotted ALOHA

  • Maximum channel utilization is 1/e (approximately 36.8%).
  • This is achieved with a low number of nodes.
  • As the number of nodes increases, the probability of collisions increases drastically.
  • The efficiency decreases significantly due to increased contention.
  • Retransmissions contribute to wasted channel capacity.

Improving Slotted ALOHA Efficiency (Limitations Addressed)

  • Careful selection of retransmission delays helps minimize collisions.
  • Using smaller packet sizes can improve throughput.
  • However, fundamental limitations in efficiency remain.
  • It's not suitable for high-traffic environments.
  • More sophisticated protocols offer better efficiency for high node densities.

Popular Posts

What is architectural design? Discuss different style and patterns of architecture.

Mastering Software Architecture: Styles and Patterns What is Architectural Design? Blueprint for software systems. Defines structure, behavior, and interactions. Guides development, ensuring scalability and maintainability. Addresses high-level concerns, not implementation details. Impacts performance, security, and cost. Architectural Styles Layered Architecture: Organizes system into horizontal layers (presentation, business logic, data access). Microservices Architecture : Breaks down application into small, independent services. Event-Driven Architecture: Components communicate asynchronously via events. Space-Based Architecture: Distributes data and processing across geographical locations. Client-Server Architecture :** Classic model with clients requesting services from servers. Architectural Patterns Model-View-Controller (MVC):  Separates concerns into model (data), view (presentation), and controller (logic). Model-View-ViewModel (MVVM): Variation o...

State the need for software configuration review.

The Indispensable Software Configuration Review: Why It Matters Early Problem Detection Prevents costly late-stage bug fixes. Identifies inconsistencies early in the development lifecycle. Reduces integration challenges. Enhanced Collaboration Improves communication between development teams. Facilitates knowledge sharing among team members. Ensures everyone is on the same page regarding the software configuration. Improved Quality Assurance Helps meet compliance requirements. Reduces the risk of security vulnerabilities. Ensures software stability and reliability. Better Traceability and Auditability Simplifies future maintenance and updates. Provides clear documentation for compliance audits. Allows for easier rollback in case of errors. Reduced Risks Minimizes potential for configuration drift. Prevents deployment failures and downtime. Improves overall project success rate.

What are key featuers of python?.

Python for Data Compression: Key Features Readability and Simplicity Clear syntax, making code easy to write and understand. Reduced development time compared to other languages. Extensive Libraries `zlib`, `gzip`, `bz2`, for common compression algorithms. `lzma` for advanced LZMA compression. `zipfile` for managing compressed archives. Cross-Platform Compatibility Runs smoothly on various operating systems (Windows, macOS, Linux). Facilitates easy deployment of data compression solutions. Community Support and Resources Abundant online tutorials, documentation, and community forums. Easier troubleshooting and faster problem-solving. Integration with other tools Seamlessly integrates with other data science tools (NumPy, Pandas). Simplifies data preprocessing and post-processing steps.

List the main pillars of Tagore’s concept of education.

Tagore's Vision: Pillars of Education & IT Ethics Holistic Development Character building. Moral and spiritual growth. Creative self-expression. Physical and mental well-being. Creative Learning Emphasis on self-discovery. Experiential learning. Fostering imagination and innovation. Rejection of rote learning. Freedom and Self-Expression Individuality and uniqueness valued. Openness to diverse perspectives. Critical thinking and questioning. Encouraging independent learning. Social Responsibility Understanding societal needs. Contribution to community welfare. Ethical considerations in all actions. Promoting social justice. Connection with Nature Appreciation of natural world. Environmental consciousness. Sustainable living practices. Holistic understanding of existence. Relevance to IT Professional Ethics Ethical use of technology. Responsible data handling. Intellectual property rights awareness. Social impact of technology consideratio...

Define Engineering Ethics. Distinguish between ethics, laws and morals.

Navigating the Ethical Minefield: Engineering Ethics in IT Defining Engineering Ethics The study of moral issues and decisions confronting individuals and organizations engaged in engineering. Application of ethical principles to engineering practice, design, and research. Focus on responsible innovation, safety, and societal well-being in engineering projects. Consideration of potential impacts on stakeholders – users, environment, society. Ethics vs. Laws vs. Morals Ethics: Formal system of principles governing conduct; professional codes and guidelines. Laws: Societal rules enforced by governmental authority; legally binding requirements. Morals: Individual beliefs and values about right and wrong; personal sense of what is good/bad. Distinguishing the Three in IT Ethics:  IT professional codes (ACM, IEEE) specify confidentiality, data security, intellectual property respect. Laws:  Copyright laws, data privacy regulations (GDPR, CCPA), cybercrime statut...